
DUNDi, So Easy A Caveman Could Do It!  
 

JR Richardson 
Engineering for the Masses 

hubguru@gmail.com 
General Description 

 
DUNDi™ is a peer-to-peer system for locating Internet gateways to telephony services. 
Unlike traditional centralized services (such as the remarkably simple and concise 
ENUM standard), DUNDi is fully-distributed with no centralized authority whatsoever. 
 
What? 
 
Simply put, DUNDi is an Asterisk specific protocol setup between two or more PBX’s 
whereby a PBX may request extension call route location information from one or more 
peering PBX’s. 
 
Here is a verbal example: 
 
 PBX A:  Hello PBX peer B.  Do you have extension 201? 
  

PBX B:  Hi PBX peer A.  Yes I do have extension 201, and here is how you will 
contact this extension, IAX2/username:password@10.10.14.122/201 

 
Please forgive me if this seems too simplistic, no offense intended.  But this is really as 
simple and as complicated as things need to get with DUNDi.  In its purest sense, all 
DUNDi does is look for extensions on another PBX. 
 
There are things we have to do to setup this peer relationship between the PBX’s and 
some dial plan manipulation to make it work effectively.  In this paper, we will step 
through the basic concepts and configurations needed to get 2 or more Asterisk PBX’s 
setup as DUNDi peers and look at the actual DUNDi messaging while processing 
DUNDi request. 
 
PBX Test Setup 

 
Assumptions, Asterisk servers are setup and functioning properly, SIP phones are 
registered to each PBX and normal call flow within each PBX is working fine.  For 
DUNDi to work only 2 Asterisk servers are needed but we will go into examples with 3 
servers. 
 
PBX A, ver 1.4, 10.10.14.121, extension 101 through 103 
PBX B, ver 1.2, 10.10.14.122, extensions 201 through 203 
PBX C, ver 1.2, 10.10.14.123, extensions 301 through 303 



DUNDi Configuration: 

 
IAX.CONF 

 
First we have to setup a channel for calls to pass between the PBX’s.  In this example we 
will use IAX2.  A simple context in iax.conf is all that is needed for the servers to 
communicate with each other. 
 
[priv] 
type=friend 
dbsecret=dundi/secret 
context=incomingdundi 

 
Add this context to each server.  That’s it, done with IAX2 setup.  Now all the PBX’s 
have a channel to direct calls across. 
 
The [priv] context is a name, could be any name as long as it is common between the 
mapping in dundi.conf, more on this later. 
 
The type=friend allows for a 2-way channel between servers. 
 
The dbsecret=dundi/secret is the password used when location information is sent out to 
requesting servers.  The DUNDi protocol generated a new secret password every hour 
and stores this password in the local Asterisk database. 
 
The context=incomingdundi is the entry point in the dial plan where calls come into.  So 
extensions.conf must have a [incomingdundi] context with a routable extension, like a 
Goto or include=internal where a new call can be processed properly.  This context could 
be named anything you like or could be any existing context where incoming calls come 
into your dial plan. 
 
DUNDI.CONF 

 
Now we will look at the dundi.conf specific configuration.  This is where we setup our 
peering relationship between servers and configure DUNDi responses.  We will setup the 
basics requirements in effort to keep explanation simple and easy.  DUNDi uses its own 
protocol on UDP port 4520 to exchange DUNDi query messages.  DUNDi does not 
communicate queries or responses through IAX, just the calls go through the [priv] IAX 
channel.  You can test this by commenting out the iax.conf context [priv], reload 
chan_iax.so and you can still have DUNDi query’s respond for valid extensions. 
 
The [general] section has several parameters that require modification for your specific 
server to work with others properly.  Most of this section is described fairly well in the 
conf file and the defaults are fine to get up and running. 
 



[general] 
department=dept 
organization=company 
locality=city 
stateprov=state 
country=US 
email=engineer@company.com 
phone=contact phone number 

 
This information is very important when peering with servers outside your organization.  
At the Asterisk CLI> the command (dundi query {entityID}) will retrieve this 
information from a remote peer for contact. 
 
;bindaddr=0.0.0.0 
;port=4520 
 
entityid=02:03:AF:B7:FF:37 

This defaults to the first NIC MAC address, but it’s a good idea to specify it. 
 
cachetime=5 

Cachetime tells the far end PBX how long to cache the query result in its local cache.   
 
ttl=2  

For the sake of this paper, we set the ttl (time to live) value to so we don’t query past 2 
servers, A to B to C.  If we allow more hops then a loop could occur, A to B to C to A to 
B to C etc, not good.  Be careful with ttl in a closed loop DUNDi system. 
 
autokill=yes 
;secretpath=dundi 
;storehistory=yes 
 
[mappings] 
priv => dundiextens,0,IAX2,priv:${SECRET}@10.10.14.121/${NUMBER},nopartial 

When a [priv] dundi lookup request comes in, this PBX will advertise whatever 
extensions are present in the [dundiextens] context in the dialplan (extensions.conf) and if 
the queried extension exists here, this PBX will send back the contact information in this 
format: 
IAX2/priv:${SECRET}@the ip address of this server/(the extension number requested) 
nonpartial tells this mapping to respond only to an exact matching extension request (no 
pattern matching) 
 
The peer section identifies who this PBX peers with: 
[00:14:22:23:26:2E]  ;(this is the MAC address of the DUNDi peer PBX B)                        
model = symmetric 
host = 10.10.14.122  ;(this is the IP address of the DUNDi peer B)  
inkey = dundi 
outkey = dundi 
include = priv 
permit = priv 
qualify = yes            
order = primary 



 
We use the same inkey/outkey for PBX A, B & C.  Sharing the same key across the test 
servers is much easier than keeping track of a set for each server.  To generate the keys: 
cd /var/lib/asterisk/keys  
#astgenkey -n priv 
Do not put a password on the keys.  This will generate 2 files (priv.key and priv.pub) 
Copy the new priv keys to PBX B and C to the /var/lib/asterisk/keys directories. You 
must have openssl package installed on the system to generate the keys. 
 
In this paper we will setup PBX A to peer with B, PBX B to peer with A and C, and PBX 
C to peer with B.  Here are the dundi.conf files for each PBX: 
 
PBX A: 

 
lab1:/etc/asterisk# more dundi.conf  
[general] 
department=Your Department 
organization=Your Company, Inc. 
locality=Your City 
stateprov=ST 
country=US 
email=your@email.com 
phone=+12565551212 
;bindaddr=0.0.0.0 
;port=4520 
entityid=00:B0:D0:CB:80:AA 
cachetime=5 
ttl=2 
autokill=yes 
;secretpath=dundi 
;storehistory=yes 
 
[mappings] 
priv => dundiextens,0,IAX2,priv:${SECRET}@10.10.14.121/${NUMBER},nopartial 
 
[00:B0:D0:CB:80:7A]     ;PBX B 
model = symmetric 
host = 10.10.14.122 
inkey = dundi 
outkey = dundi 
include = priv 
permit = priv 
qualify = yes            
order = primary 
 



PBX B: 

 
 [general] 
department=Your Department 
organization=Your Company, Inc. 
locality=Your City 
stateprov=ST 
country=US 
email=your@email.com 
phone=+12565551212 
;bindaddr=0.0.0.0 
;port=4520 
entityid=00:B0:D0:CB:80:7A 
cachetime=5 
ttl=2 
autokill=yes 
;secretpath=dundi 
;storehistory=yes 
 
[mappings] 
priv => dundiextens,0,IAX2,priv:${SECRET}@10.10.14.122/${NUMBER},nopartial 
 
[00:B0:D0:CB:80:AA]     ;PBX A 
model = symmetric 
host = 10.10.14.121 
inkey = dundi 
outkey = dundi 
include = priv 
permit = priv 
qualify = yes 
order = primary 
 
[00:B0:D0:CC:5C:E8]     ;PBX C 
model = symmetric 
host = 10.10.14.123 
inkey = dundi 
outkey = dundi 
include = priv 
permit = priv 
qualify = yes 
order = primary 

 



PBX C: 

 
 [general] 
department=Your Department 
organization=Your Company, Inc. 
locality=Your City 
stateprov=ST 
country=US 
email=your@email.com 
phone=+12565551212 
;bindaddr=0.0.0.0 
;port=4520 
entityid=00:B0:D0:CC:5C:E8 
cachetime=5 
ttl=2 
autokill=yes 
;secretpath=dundi 
;storehistory=yes 
 
[mappings] 
priv => dundiextens,0,IAX2,priv:${SECRET}@10.10.14.123/${NUMBER},nopartial 
 
[00:B0:D0:CB:80:7A]     ;PBX B 
model = symmetric 
host = 10.10.14.122 
inkey = dundi 
outkey = dundi 
include = priv 
permit = priv 
qualify = yes 
order = primary 

 
Once the config files are updated, restart Asterisk or at the CLI>reload pbx_dundi.so 
 
Use the “dundi show peers” command at the Asterisk CLI> to see connection state with 
the peers identified in dundi.conf: 
 
PBXA*CLI> dundi show peers 
EID                  Host                Model      AvgTime  Status          
00:b0:d0:cb:80:7a    10.10.14.122    (S) Symmetric  Unavail  OK (1 ms)       
1 dundi peers [1 online, 0 offline, 0 unmonitored] 
 
 
PBXB*CLI> dundi show peers 
EID                  Host                Model      AvgTime  Status          
00:b0:d0:cc:5c:e8    10.10.14.123    (S) Symmetric  Unavail  OK (1 ms)       
00:b0:d0:cb:80:aa    10.10.14.121    (S) Symmetric  Unavail  OK (1 ms)       
2 dundi peers [2 online, 0 offline, 0 unmonitored] 
 
PBXC*CLI> dundi show peers 
EID                  Host                Model      AvgTime  Status          
00:b0:d0:cb:80:7a    10.10.14.122    (S) Symmetric  Unavail  OK (1 ms)       
1 dundi peers [1 online, 0 offline, 0 unmonitored] 

 



 
EXTENSIONS.CONF 

 
This is where we announce DUNDi extensions, route the calls and query other servers. 
 
For the sake of this paper, we have a very basic extensions.conf file so we can focus on 
DUNDi.  Here are the PBX extensions.conf files for each PBX. 
 
PBX A extensions.conf 

 
[general] 
static=yes 
writeprotect=no 
autofallthrough=yes 
clearglobalvars=no 
priorityjumping=no 
 
[lookupdundi] 
switch => DUNDi/priv 
 
[dundiextens] 
exten => 101,1,NoOp 
exten => 102,1,NoOp 
exten => 103,1,NoOp 
 
[incomingdundi] 
exten => 101,1,Goto(internal|101|1) 
exten => 102,1,Goto(internal|102|1) 
exten => 103,1,Goto(internal|103|1) 
 
[internal] 
exten => 101,1,Answer 
exten => 101,2,Dial(SIP/101|30|tr) 
exten => 101,3,Hangup 
 
exten => 102,1,Answer 
exten => 102,2,Dial(SIP/102|30|tr) 
exten => 102,3,Hangup 
 
exten => 103,1,Answer 
exten => 103,2,Dial(SIP/103|30|tr) 
exten => 103,3,Hangup 
 
exten => _2XX,1,Goto(lookupdundi|${EXTEN}|1) 
exten => _3XX,1,Goto(lookupdundi|${EXTEN}|1) 

 



PBX B extensions.conf 

 
[general] 
static=yes 
writeprotect=no 
autofallthrough=yes 
clearglobalvars=no 
priorityjumping=no 
 
[lookupdundi] 
switch => DUNDi/priv 
 
[dundiextens] 
exten => 201,1,NoOp 
exten => 202,1,NoOp  
exten => 203,1,NoOp  
 
[incomingdundi] 
exten => 201,1,Goto(internal|201|1) 
exten => 202,1,Goto(internal|202|1)  
exten => 203,1,Goto(internal|203|1)  
 
[internal] 
include => lookupdundi 
 
exten => 201,1,Answer 
exten => 201,2,Dial(SIP/201|30|tr) 
exten => 201,3,Hangup 
 
exten => 202,1,Answer  
exten => 202,2,Dial(SIP/202|30|tr)    
exten => 202,3,Hangup   
 
exten => 203,1,Answer  
exten => 203,2,Dial(SIP/203|30|tr)   
exten => 203,3,Hangup 

 
PBX C extensions.conf 

 
[general] 
static=yes 
writeprotect=no 
autofallthrough=yes 
clearglobalvars=no 
priorityjumping=no 
 
[lookupdundi] 
switch => DUNDi/priv 
 
[dundiextens] 
exten => 301,1,NoOp 
exten => 302,1,NoOp  
exten => 303,1,NoOp  
 



[incomingdundi] 
exten => 301,1,Goto(internal|301|1) 
exten => 302,1,Goto(internal|302|1)  
exten => 303,1,Goto(internal|303|1)  
 
[internal] 
include => lookupdundi 
 
exten => 301,1,Answer 
exten => 301,2,Dial(SIP/301|30|tr) 
exten => 301,3,Hangup 
 
exten => 302,1,Answer  
exten => 302,2,Dial(SIP/302|30|tr)    
exten => 302,3,Hangup   
 
exten => 303,1,Answer  
exten => 303,2,Dial(SIP/303|30|tr)   
exten => 303,3,Hangup 
 
There is one difference between PBX A and B/C and that is in the [internal] context of 
PBX A you will find these 2 extensions: 
exten => _2XX,1,Goto(lookupdundi|${EXTEN}|1) 
exten => _3XX,1,Goto(lookupdundi|${EXTEN}|1) 
These are for pattern matching of known extensions on PBX B and C.  This is one way to 
get the call to the DUNDi switch statement context [lookupdundi].  Another way is to use 
an ‘include => lookupdundi’ statement in the [internal] context like in PBX B and C. 
As we take a closer look into extensions.conf, we find a context called [lookupdundi].  
This context has a switch statement ‘switch => DUNDi/priv’, this is where DUDNi 
query’s the peers and request extension location information.  Notice the ‘/priv’ this is the 
DUNDi mapping we are querying, so if you have a mapping on another server with a 
name of ‘george’ and you wanted to search for an extension there, then your switch 
statement would be ‘switch => DUNDi/george’ 
 
This becomes very powerful when you need to query PBX’s for different things like 
extensions, voicemail boxes, outbound trunks, you can be very creative with the use of 
mappings. 
 
The next context is [dundiextens] which has the actual extensions that this PBX responds 
with location information for.  This context corresponds to the priv mapping in 
dundi.conf.  This is easily tested by removing or adding extensions in this context and 
watching the dundi lookup responses from the CLI> on another server. 
 
The [incomingdundi] context is the entry point at which dundi calls coming to this server 
hit the dial plan.  This corresponds to the ‘context=incomingdundi’ entry in the [priv] 
context in iax.conf.  All we do here is send the call to the actual extension in [internal] 
context with a Goto command. 



Testing the Setup 

 
Now that we have the PBX’s setup for DUNDi, lets take a look at some CLI> outputs 
from some actual dundi lookups. 
 
Example 1:  From PBX A, at the Asterisk CLI> initiate a dundi lookup for exten 201 and 
then exten 205 (not available on any peer): 
 
PBXA*CLI> dundi lookup 201@priv 
  1.     0 IAX2/priv:Q4pFZoZInT6ORBgemoDkIA@10.10.14.122/201 (EXISTS) 
     from 00:b0:d0:cb:80:7a, expires in 5 s 
DUNDi lookup completed in 40 ms 
 
lab1*CLI> dundi lookup 205@priv  
DUNDi lookup returned no results. 
DUNDi lookup completed in 65 ms 
 
Here we see a very useful CLI tool to determine if DUNDi is working and if the 
extension is available or not.  Also the ‘dundi debug’ command will also give you good 
detail of the transaction between the requesting PBX and the peering PBX.  Enable dundi 
debug on both PBX A and B, you will see the Tx (transmit) and Rx (receive) messages 
between the PBX’s.  Unlike most debug messaging, DUNDi debugs are relatively simple 
to follow and understand. 
 
Example 2:  A call from exten 101 on PBX A to exten 201 on PBX B. 
PBX A: 
PBXA*CLI>  
    -- Executing [201@internal:1] Goto("SIP/101-081d2f58", "lookupdundi|201|1") in new stack 
    -- Goto (lookupdundi,201,1) 
    -- Called priv:UvTZKI5ej1fM4XQmPE9+Cg@10.10.14.122/201 
    -- Call accepted by 10.10.14.122 (format ulaw) 
    -- Format for call is ulaw 
    -- IAX2/10.10.14.122:4569-1 answered SIP/101-081d2f58 
    -- Hungup 'IAX2/10.10.14.122:4569-1' 
  == Spawn extension (lookupdundi, 201, 1) exited non-zero on 'SIP/101-081d2f58' 

 
Notice the call is sent to the [lookupdundi] context and then sent over to the 10.10.14.122 
PBX B, call accepted, ulaw, answered then hungup.  Looks like any other PBX-to-PBX 
IAX trunk call except that the password in a bit long. 
 
PBX B: 
PBXB*CLI>  
    -- Accepting AUTHENTICATED call from 10.10.14.121: 
       > requested format = ulaw, 
       > requested prefs = (ulaw), 
       > actual format = ulaw, 
       > host prefs = (ulaw|gsm), 
       > priority = mine 
    -- Executing Goto("IAX2/priv-1", "internal|201|1") in new stack 
    -- Goto (internal,201,1) 
    -- Executing Answer("IAX2/priv-1", "") in new stack 



    -- Executing Dial("IAX2/priv-1", "SIP/201|30|tr") in new stack 
    -- Called 201 
    -- SIP/201-08181d88 is ringing 
  == Spawn extension (internal, 201, 2) exited non-zero on 'IAX2/priv-1' 
    -- Hungup 'IAX2/priv-1' 

 
Notice the call is accepted, ulaw, hits the [incomingdudni] context then is sent to the 
[internal] context at exten 201.  This is normal call progressing like any other call, 
internally or externally. 
 
Example 3:   From exten 101 on PBX A, we call exten 301 on PBX C.  Keep in mind 
that PBX A can find extensions on PBX C, but only through PBX B.  So the query will 
go from A to B to C, but the actual call will go from A to C directly. 
PBX A: 
PBXA*CLI>  
    -- Executing [301@internal:1] Goto("SIP/101-081d2f58", "lookupdundi|301|1") in new stack 
    -- Goto (lookupdundi,301,1) 
    -- Called priv:qef1LMx6q0cuAf1S9QbgXw@10.10.14.123/301 
    -- Call accepted by 10.10.14.123 (format ulaw) 
    -- Format for call is ulaw 
    -- IAX2/10.10.14.123:4569-1 answered SIP/101-081d2f58 
    -- Hungup 'IAX2/10.10.14.123:4569-1' 
  == Spawn extension (lookupdundi, 301, 1) exited non-zero on 'SIP/101-081d2f58' 

 
PBX B: 
PBXB*CLI> 

 
Notice nothing happens on PBX B, the call does not come through this PBX.  You will 
not see DUNDi transactions unless you enable ‘dundi debug’ at the CLI>.  With dundi 
debug enabled on PBX B, you will see the Rx query from PBX A, then PBX B will re-
distribute the query to PBX C, then PBX C will respond to PBX B with good contact 
information, then PBX B will respond back to PBX A with the contact info form PBC C 
to contact exten 301 directly.  This paper is long enough so I did not want to include 
debug messaging here. 
 
PBX C: 
lab3*CLI>  
    -- Accepting AUTHENTICATED call from 10.10.14.121: 
       > requested format = ulaw, 
       > requested prefs = (ulaw), 
       > actual format = ulaw, 
       > host prefs = (ulaw|gsm), 
       > priority = mine 
    -- Executing Goto("IAX2/10.10.14.121:4569-1", "internal|301|1") in new stack 
    -- Goto (internal,301,1) 
    -- Executing Answer("IAX2/10.10.14.121:4569-1", "") in new stack 
    -- Executing Dial("IAX2/10.10.14.121:4569-1", "SIP/301|30|tr") in new stack 
    -- Called 301 
    -- SIP/301-0685 is ringing 
    -- SIP/301-0685 is ringing 
  == Spawn extension (internal, 301, 2) exited non-zero on 'IAX2/10.10.14.121:4569-1' 
    -- Hungup 'IAX2/10.10.14.121:4569-1' 



Closing Notes 

 
The wiki has some great information on DUNDi and also examples of how to manage 
e164. 
 
http://www.voip-info.org/wiki-DUNDi 
 
http://www.voip-info.org/wiki-Asterisk+DUNDi+Call+Routing 
 
http://www.astricon.net/files/usa06/Friday-
General_Conference/JR_Richardson_Whitepaper.pdf 
 
Also a quick google search for ‘asterisk dundi’ will pull up some great information on 
other presentations, explanations, user comments from mailing list, etc. 
 
DUNDi is a great protocol and relatively easy to implement once the basic concepts and 
configurations are fully understood.  So my advice is to start with a very simple setup like 
the one described above, and layer in complexity only after you get comfortable with 
using and debugging the protocol. 
 
Hope this helps. 
 
JR 
 


